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Abstract In this paper we introduce a new explicit hybrid Numerov-type method.
This method is of fourth algebraic order and has phase-lag and its first two derivatives
equal to zero. We present a stability analysis and an error analysis based on the radial
Schrödinger equation. Finally we apply the new proposed method to the resonance
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on the theoretical analysis and numerical results.

Keywords Numerical solution · Schrödinger equation · Multistep methods ·
Hybrid methods · Interval of periodicity · P-stability · Phase-lag · Phase-fitted ·
Derivatives of the phase-lag

T. E. Simos: Highly Cited Researcher (http://isihighlycited.com/). Active Member of the European
Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding
Member of European Academy of Arts, Sciences and Humanities.

T. E. Simos
Department of Mathematics, College of Sciences, King Saud University, P. O. Box 2455,
Riyadh 11451, Saudi Arabia

T. E. Simos
Laboratory of Computational Sciences, Department of Computer Science and Technology,
Faculty of Sciences and Technology, University of Peloponnese, 221 00 Tripolis, Greece

T. E. Simos (B)
10 Konitsis Street, Amfithea—Paleon Faliron, 175 64 Athens, Greece
e-mail: tsimos.conf@gmail.com

123

http://isihighlycited.com/


J Math Chem (2011) 49:2486–2518 2487

1 Introduction

The model of the the radial Schrödinger equation can be presented as:

y′′(x) =
[
l(l + 1)/x2 + V (x)− k2

]
y(x). (1)

It is known that Mathematical Models in theoretical physics and chemistry, material
sciences, quantum mechanics and quantum chemistry, electronics etc. can be express
via the above boundary value problem (see for example [1–4]).

For the above equation (1) we have the following definitions:

– The function W (x) = l(l + 1)/x2 + V (x) is called the effective potential. This
satisfies W (x) → 0 as x → ∞

– The quantity k2 is a real number denoting the energy
– The quantity l is a given integer representing the angular momentum
– V is a given function which denotes the potential.

The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of x , determined by physical con-
siderations.

The numerical methods for the approximate solution of the Schrödinger equation
and related problems can be divided into two main categories:

1. Methods with constant coefficients
2. Methods with coefficients depending on the frequency of the problem.1

In this paper we will use a recent methodology for the development of numerical
methods for the approximate solution periodic initial-value problems. The new meth-
odology is based on the requirement of vanishing the phase-lag and its derivatives.
Based on this new methodology we will develop a two-step method which will have
vanishing phase-lag and its first and second derivatives.

We will apply the new developed method on the numerical solution of the radial
Schrödinger equation. We will study the efficiency of the new obtained method via:

– a comparative error analysis
– a comparative stability analysis and finally
– the numerical results produced from the numerical solution of the radial

Schrödinger with the application to the specific potential.

More specifically, we will develop a hybrid Numerov-type method with algebraic
order six. The development of the new family of methods is based on the requirement
of vanishing the phase-lag and its first and second derivatives.

1 When using a functional fitting algorithm for the solution of the radial Schrödinger equation, the fitted
frequency is equal to:

√
|l(l + 1)/x2 + V (x)− k2|.
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We will give a comparative error analysis and a comparative stability analysis in
order to study the efficiency of the new proposed method. Finally, we will apply the
new method to the resonance problem. This is one of the most difficult problems
arising from the radial Schrödinger equation.

We have organized the paper as follows:

– A brief bibliography on the subject is presented in Sect. 2.
– In Sect. 3 we present the theory of the new methodology.
– In Sect. 4 we present the development of the new family of methods.
– A comparative error analysis is presented in Sect. 5.
– In Sect. 6 we will present a comparative stability analysis.
– The numerical results are presented in Sect. 7.
– Finally, in Sect. 8 remarks and conclusions are discussed.

2 Brief presentation of the literature on the subject

Large research on the algorithmic development of numerical methods for the solution
of the Schrödinger equation has been done the last decades. The aim and scope of
this research is the construction of fast and reliable algorithms for the solution of the
Schrödinger equation and related problems (see for example [5–39]).

More specifically the last years:

– Phase-fitted methods and numerical methods with minimal phase-lag of Run-
ge-Kutta and Runge-Kutta Nyström type have been developed in [10–26]. The
research on this subject has as a scope the production of numerical methods of
Runge-Kutta and Runge-Kutta Nyström type which have vanished the phase-lag
and/or the amplification factor. More recently this research has also as a subject
the vanishing of the derivatives of the phase-lag and/or the amplification factor of
the above mentioned methods.

– In [27–35] exponentially and trigonometrically fitted Runge-Kutta and Runge-
Kutta Nyström methods are obtained. The main scope of this research subject is
the development of numerical methods of Runge-Kutta and Runge-Kutta Nyström
type which integrate exactly any linear combination of the functions:

{
1, x, x2, x3, xm, . . . , exp(±w x), x exp(±w x),

x2 exp(±w x), . . . , x p exp(±w x)

}
(3)

or the functions:
{

1, x, x2, x3, xm, . . . , cos(w x), sin(w x), x cos(w x),

x sin(w x), x2 cos(w x), x2 sin(w x), . . . , x p cos(w x), x p sin(w x),

}

(4)
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– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
developed in [40–68]. The research on this subject has as a scope the production
of numerical nultistep methods of several type (linear, predictor-corrector, hybrid
etc.) which have vanished the phase-lag. More recently this research has also as a
subject the vanishing of the derivatives of the phase-lag of the above mentioned
methods. Recently also some techniques which can optimize these methods are
also obtained.

– Symplectic integrators are studied in [69–95]. The research on this subject has
as a scope the production of numerical methods (Runge-Kutta and Runge-Ku-
tta Nyström, Partitioned Runge-Kutta, differential schemes based on well known
integration formulae etc.) which satisfy the symplectic properties.

– Exponentially and trigonometrically multistep methods have been developed in
[96–121]. The main scope of this research subject is the development of numerical
multistep methods of several type (linear, predictor-corrector, hybrid etc.) which
integrate exactly any linear combination of the functions (3) or (4). We note
here that recently [122] an exponentially-fitted method for the time dependent
Schrödinger equation was obtained.

– Several pseudospectral methods have been studied and developed [123]
– New function fitting methods [124]
– Review papers have been written in [127–129]

We note that other special new methods have also been obtained most recently (see
[125] and [126]) which will be applied in the future on the numerical solution of the
Schrödinger equation and related problems.

3 Phase-lag analysis of symmetric multistep methods

In this section we present the phase-lag analysis of symmetric multistep methods. The
phase-lag analysis is based on the the following steps:

– We consider a multistep method with m steps which can be used over the equally
spaced intervals {ri }m

i=0 ∈ [a, b] and h = |ri+1 − ri |, i = 0(1)m − 1, for the
numerical solution of the initial value problem:

φ′′ = f (r, φ) (5)

– Since the method is symmetric then ai = am−i and bi = bm−i , i = 0(1)�m
2 �.

– We apply the symmetric 2k-step method, that is for i = −k(1)k, to the scalar test
equation

φ′′ = −ω2 φ (6)

– The result of the above application is a difference equation of the form

Ak(v) φn+k + · · · + A1(v) φn+1 + A0(v) φn

+A1(v) φn−1 + · · · + Ak(v) φn−k = 0 (7)
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where v = ω h, h is the step length and A0(v), A1(v), . . . , Ak(v) are polynomials
of v.

– The characteristic equation associated with (7) is given by:

Ak(v) λ
k + · · · + A1(v) λ+ A0(v)+ A1(v) λ

−1+· · · + Ak(v) λ
−k =0 (8)

– Therefore, we have the following theorem

Theorem 1 [41] The symmetric 2k-step method with characteristic equation given
by (8) has phase-lag order r and phase-lag constant c given by

− c vr+2 + O(vr+4) = 2 Ak(v) cos
(
k v

) + · · · + 2 A j (v) cos
(

j v
) + · · · + A0(v)

2 k2 Ak(v)+ · · · + 2 j2 A j (v)+ · · · + 2 A1(v)
(9)

The formula proposed from the above theorem gives us a direct method to calculate
the phase-lag of any symmetric 2k- step method.

Remark 1 The Derivatives of the phase-lag for the multistep methods are computed
based on the above direct formula (9).

4 The new family of hybrid Numerov-type low algebraic order methods

4.1 Development of the new method

In order to obtain the new method the following algorithm is applied:

1. General Requirements for the New Proposed Method
We require the new proposed methods to have:
– the maximum algebraic order and
– three free parameters,

2. Computation of the Difference Equation and the Associated Characteristic Equa-
tion

3. Computation of the corresponding polynomials Ai (v), i = 0, 1
4. Computation of the Corresponding Phase-lag
5. Computation of the Corresponding Derivatives of the Phase-lag (First Derivative

in this case)
6. Demand for the satisfaction of the appropriate relations—determination of the

coefficients of the new proposed methods
7. Taylor series expansions of the obtained coefficients
8. Computation of the Local Truncation Error
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We introduce the following family of methods to integrate φ′′ = f (x, φ) :

φn+1 = −a0 φn − φn−1 + a1 h2 φ′′
n

φ̃n+1 = −b0 φn − φn−1 + h2
[
b1

(
φ

′′
n+1 + φ′′

n−1

)
+ b2 φ

′′
n

]

φ̂n = φn − d0 h2 (
φ̃′′

n+1 − 2φ′′
n + φ′′

n−1

)

φn+1 + c0 φn + φn−1 = h2 [
c1

(
φ̃′′

n+1 + φ′′
n−1

) + c2 φ̂
′′
n

]
(10)

4.2 The new method with vanished phase-lag and its first two derivatives

Requiring the above method (10) to have the maximum algebraic order with two free
parameter, the following relations are obtained:

a0 = −2, a1 = 1, b0 = −2, b1 = 1

12
, b2 = 5

6
, c0 = −2 (11)

The application of the above method to the scalar test equation (6) gives the fol-
lowing difference equation:

A1(v)
(
φn+1 + φn−1

)
+ A0(v) φn = 0 (12)

where v = ωh, h is the step length and Ai (v), i = 0, 1 are polynomials of v.
The characteristic equation associated with (12) is given by:

A1(v)
(
λ+ λ−1

)
+ A0(v) = 0 (13)

where

A0(v) = −2 + v2
[

c1

(
2 − v2

(
1 − 1

12
v2

))

+ c2

(
1 − d0v4

(
1 − 1

12
v2

))]

A1(v) = 1 (14)

By applying k = 1 in the formula (9), we have that the phase-lag is equal to:

phl = cos (v)− 1 + 1

2
v2

[
c1

(
2 − v2

(
1 − 1

12
v2

))

+ c2

(
1 − d0v4

(
1 − 1

12
v2

))]
(15)
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The phase-lag’s first derivative is given by:

˙phl = − sin (v)+ v

[
c1

(
2 − v2

(
1 − 1

12
v2

))

+ c2

(
1 − d0v4

(
1 − 1

12
v2

))]
+ 1

2
v2

[
c1

(
−2 v

(
1 − 1

12
v2

)
+ 1

6
v3

)

+ c2

(
−4 d0v3

(
1 − 1

12
v2

)
+ 1

6
d0v5

)]
(16)

The phase-lag’s second derivative is given by:

¨phl = − cos (v)+ c1

[
2 − v2

(
1 − 1

12
v2

)]
+ c2

[
1 − d0v4

(
1 − 1

12
v2

)]

+ 2 v

[
c1

[
−2 v

(
1 − 1

12
v2

)
+ 1

6
v3

]
+ c2

[
−4 d0v3

(
1 − 1

12
v2

)

+ 1

6
d0v5

]]
+ 1

2
v2

[
c1

(
−2 + v2

)
+ c2

[
−12 d0v2

(
1 − 1

12
v2

)
+ 3

2
d0v4

]]

(17)

Demanding the phase-lag and the first and second derivatives of the phase-lag to
be vanished we find out that:

c1 = T0

v8 − 12 v6 + 48 v4

c2 = T1

12 v8 − 144 v6 + 576 v4

d0 = T2

T3
(18)

T0 = −3 cos (v) v4 + 27 v3 sin (v)− 48 v2 + 72 cos (v) v2

− 168 v sin (v)+ 288 − 288 cos (v)

T1 = v8 cos (v)− 13 v7 sin (v)+ 48 v6 − 72 cos (v) v6

+ 264 v5 sin (v)+ 984 cos (v) v4 − 768 v4 − 1944 v3 sin (v)

+ 4608 v2 − 5184 cos (v) v2 + 4032 v sin (v)− 6912 + 6912 cos (v)

T2 = 24 cos (v) v4 − 168 v3 sin (v)+ 288 v2

− 432 cos (v) v2 + 720 v sin (v)+ 1152 cos (v)− 1152

T3 = v10 cos (v)− 13 v9 sin (v)+ 48 v8 − 72 v8 cos (v)

+ 264 v7 sin (v)+ 984 cos (v) v6 − 768 v6 − 1944 v5 sin (v)

+ 4608 v4 − 5184 cos (v) v4 + 4032 v3 sin (v)− 6912 v2 + 6912 cos (v) v2
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For small values of |v| the formulae given by (18) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

c1 = 1

12
− 1

840
v4 − 19

64800
v6 − 557

11404800
v8

− 8303

1362160800
v10 − 1059613

2092278988800
v12

+ 809351

2134124568576000
v14 + 12949893017

1216451004088320000
v16 + · · ·

c2 = 5

6
+ 1

420
v4 + 43

226800
v6 + 1

7983360
v8

− 22301

5448643200
v10 − 1065907

1046139494400
v12

− 180943901

1067062284288000
v14 − 6436501861

304112751022080000
v16 + · · ·

d0 = 1

200
+ 1

700
v2 + 277

1260000
v4 + 209927

8731800000
v6

+ 1117733

756756000000
v8 − 733705919

7628100480000000
v10

− 371075765461

7780662489600000000
v12 − 3059031184711277

341493276668544000000000
v14

− 752691356321903

650463384130560000000000
v16 + · · · (19)

The behavior of the coefficients is given in the following Fig. 1.
The local truncation error of the new proposed method is given by:

LTE = − h8

2520

(
y(8)n + 3ω2 y(6)n + 3ω4 y(4)n + ω6 y(2)n

)
(20)

5 Comparative error analysis

We will study the following methods:

– The Numerov’s method which is indicated as Method I
– The method developed by Raptis and Allison [37] which is indicated as Method

II
– The two-step P-stable method developed by Wang [142] which is indicated as

Method III
– The method developed by Ixaru and Rizea [136] which is indicated as Method IV
– The method produced by Raptis [143] which is indicated as Method V
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Fig. 1 Behavior of the coefficients of the new proposed method given by (18), (19) for several values of v

– The classical method of the new proposed family2 which is indicated as Method
VI

– The new developed two-step Numerov-type hybrid method with phase-lag and
its first and second derivatives equal to zero obtained in paragraph 4.2 which is
indicated as Method VII

The error analysis is based on the following steps:

– The one-dimensional time independent Schrödinger equation is of the form

y′′(x) = f (x) y(x) (21)

2 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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– The function f (x) is written in the form (based on the paper of Ixaru and Rizea
[135]):

f (x) = g(x)+ G (22)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = v2 = Vc − E .

– Our analysis is based also on the expression of the derivatives y(i)n , i = 2, 3, 4, . . . ,
which are terms of the local truncation error formulae, in terms of the equation
(21). The expressions are presented as polynomials of G.

– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae.

Based on the procedure mentioned above and on the formulae:

y(2)n = (V (x)− Vc + G) y(x)

y(4)n =
(

d2

dx2 V (x)

)
y(x)+ 2

(
d

dx
V (x)

) (
d

dx
y(x)

)

+ (V (x)− Vc + G)

(
d2

dx2 y(x)

)

y(6)n =
(

d4

dx4 V (x)

)
y(x)+ 4

(
d3

dx3 V (x)

) (
d

dx
y(x)

)

+ 3

(
d2

dx2 V (x)

) (
d2

dx2 y(x)

)
+ 4

(
d

dx
V (x)

)2

y(x)

+ 6 (V (x)− Vc + G)

(
d

dx
y(x)

) (
d

dx
V (x)

)

+ 4 (V (x)− Vc + G) y(x)

(
d2

dx2 V (x)

)

+ (V (x)− Vc + G)2
(

d2

dx2 y(x)

)
· · ·

we obtain the expressions mentioned below (for analytic expressions of the Local
Truncation Errors for the Method VI and Method VII see in Appendix A).

We consider two cases in terms of the value of E :

– The Energy is close to the potential, i.e. G = Vc − E ≈ 0. So only the free terms
of the polynomials in G are considered. Thus for these values of G, the methods
are of comparable accuracy. This is because the free terms of the polynomials in
G, are the same for the cases of the classical method and of the new developed
methods.
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– G 	 0 or G 
 0. Then | G | is a large number.
So, we have the following asymptotic expansions of the equations produced from
the Local Truncation errors and based on the above procedure (see [139,141] and
equations (47)–(48)).
The Numerov’s Method

LTEMethodI = h6
(

− 1

240
y(x)G3 + · · ·

)
(23)

The Method of Raptis and Allison [37]

LTEMethodII = h6
(

− 1

240
g(x) y(x)G2 + · · ·

)
(24)

The two-step P-stable method developed by Wang [142]

LTEMethodIII = h6
(

− 1

80
g (x) y (x) G2 + · · ·

)
(25)

The Method of Ixaru and Rizea [136]

LTEMethodIV = h6
[(

− 1

120

(
d

dx
g (x)

)
d

dx
y (x)

− 1

48

(
d2

dx2 g (x)

)
y (x)− 1

240
(g (x))2 y (x)

)
G + · · ·

]

(26)

The method produced by Raptis [143]

LTEMethodV = h6
(

− 1

60

(
d2

dx2 g (x)

)
y (x) G + · · ·

)
(27)

The Classical Case of the Family
3

LTEMethodVI = h8
( 1

2520
y (x) G4 + · · ·

)
(28)

The new developed two-step Numerov-type hybrid method with

phase-lag and its first and second derivatives equal to zero

obtained in paragraph 4.2

LTEMethodVII = h8
( 1

630

(
d2

dx2 g (x)

)
y (x) G2 + · · ·

)
(29)

3 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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Table 1 Comparative error
analysis for the methods
mentioned in Sect. 4

We note that CFAE is the
coefficient of the maximum
power of G in the asymptotic
expansion and order of G is the
order of G in the asymptotic
expansion of the local truncation
error

Method Algebraic order Order of G CFAE

Method I 4 3 − 1

240

Method II 4 2 − 1

240

Method III 4 2 − 1

80

Method IV 4 1 − 1

120

Method V 4 1 − 1

60

Method VI 6 4
1

2520

Method VII 6 2
1

630

From the above equations and Table 1 we have the following theorem:

Theorem 2
– For the two-step Numerov’s fourth algebraic order method the error increases as

the third power of G
– For the two-step exponentially-fitted fourth algebraic order method developed by

Raptis and Allison [37] the error increases as the second power of G
– For the two-step P-stable fourth algebraic order method developed by Wang [142]

the error increases as the second power of G
– For the two-step exponentially-fitted fourth algebraic order method developed by

Ixaru and Rizea [136] the error increases as the first power of G
– For the two-step exponentially-fitted fourth algebraic order method developed by

Raptis [143] the error increases as the first power of G
– For the classical sixth algebraic order method of the new proposed family4 the

error increases as the fourth power of G
– Finally, for the new developed two-step Numerov-type sixth algebraic order hybrid

method with phase-lag and its first and second derivatives equal to zero obtained
in paragraph 4.2 the error increases as the second power of G

So, for the numerical solution of the time independent radial Schrödinger equa-
tion the new proposed method produced in this paper (Sect. 4.2) is the most accurate
Method , especially for large values of | G |=| Vc − E |, since it is of a sixth algebraic
order method for which the error increases as the second power of G.

6 Stability analysis

In this section we will present the stability analysis for the new method which is based
on the following algorithm:

4 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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1. Application of the Proposed Method to the Scalar Test Equation
2. Definition of the Difference Equation and the Corresponding Characteristic Equa-

tion
3. Development of the s − v Plane and production of the appropriate diagrams
4. Remarks and Conclusions

Based on the above algorithm we have the following analysis:
The method (10), with the coefficients (18) is applied to the scalar test equation:

ψ ′′ = −t2ψ, (30)

where t �= ω.
We obtain the following difference equation:

Ak(s, v) ψn+k + · · · + A1(s, v) ψn+1 + A0(s, v) ψn

+A1(s, v) ψn−1 + · · · + Ak(s, v) ψn−k = 0 (31)

where s = t h, h is the step length and A0(s, v), A1(s, v), . . . , Ak(s, v) are polyno-
mials of s and v = ωh and k = 5. The polynomials Ai (s, v), i = 0(1)5 for the two
methods of the family are presented in Appendix C.

The characteristic equation associated with (31) is given by:

Ak(s, v) ϑk +· · ·+ A1(s, v) ϑ + A0(s, v)+ A1(s, v) ϑ−1+· · · + Ak(s, v) ϑ−k =0

(32)

Definition 1 (see [36]) A symmetric 2k-step method with the characteristic equation
given by (32) is said to have an interval of periodicity

(
0, s2

0

)
if, for all s ∈ (

0, s2
0

)
,

the roots zi , i = 1, 2 satisfy

z1,2 = e±i ζ(t h), |zi | ≤ 1, i = 3, 4 (33)

where ζ(t h) is a real function of t h and s = t h.

Definition 2 (see [36]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S5 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. v = s.

In Fig. 2 we present the s − v plane for the methods developed in this paper. A
shadowed area denotes the s −v region where the method is stable, while a white area
denotes the region where the method is unstable.

5 Where S is a set of distinct points.
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s (test problem)

v 
(m

et
ho

d)

Stability Region for the New Method

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Fig. 2 s − v plane of the New Method produced in Sect. 4.2

Remark 2 For the solution of the Schrödinger equation the frequency of the exponen-
tial fitting is equal to the frequency of the scalar test equation. So, it is necessary to
observe the surroundings of the first diagonal of the s − v plane.

In the case that the frequency of the scalar test equation is equal with the frequency
of phase fitting, i.e. in the case that v = s (i.e. see the surroundings of the first diagonal
of the s − v plane), it is easy to see that the interval of periodicity of the new obtained
method is equal to: (0,∞)− Q (where where Q = k�, k = 0, 1, 2, . . .) i.e the new
proposed method is singularly almost P-stable.

From the above analysis we have the following theorem:

Theorem 3 The method (10) with the coefficients given by (18) and (19) is of sixth
algebraic order, has the phase-lag and its first and second derivatives equal to zero and
has an interval of periodicity equals to: (0,∞)−Q (where Q = k�, k = 0, 1, 2, . . .).

Based on the analysis presented above, we studied the interval of periodicity of
the seven methods mentioned in the previous paragraph. The results presented in the
Table 2.

7 Numerical results: conclusion

We apply the new proposed method to the radial time independent Schrödinger equa-
tion. This application is used in order to illustrate the efficiency of the new proposed
method.
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Table 2 Comparative stability
analysis for the methods
mentioned in the Sect. 5

The sets Si , i = 1(1)4 and Q
are sets of of distinct points

Method Interval of periodicity

Method I (0, 6)

Method II (0,∞)− S1

Method III (0,∞)− S2

Method IV (0,∞)− S3

Method V (0,∞)− S4

Method VI (0, 5.92)

Method VII (0,∞)− Q

The application of the new obtained method to the to the radial Schrödinger equation
requires the value of parameter v. For any mathematical model which can be expressed
problem with equations of the form of the radial Schrödinger equation given by (1)
the parameter v is given by

v = √|q(x)| = √|V (x)− E | (34)

where V (x) is the potential and E is the energy.

7.1 Woods-Saxon potential

In our example the well known Woods-Saxon potential given by

V (x) = u0

1 + z
− u0z

a

(
1 + z

)2 (35)

is used, with z = exp

[(
x − X0

)
/a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods-Saxon potential is shown in the Fig. 3.
It is well known, from the literature, that for some potentials, such as the Woods-

Saxon potential, the definition of parameter v is not given as a function of x but it is
based on some critical points which have been defined from the investigation of the
appropriate potential (see for details [136]).

For the purpose of obtaining our numerical results it is appropriate to choose v as
follows (see for details [136]):

v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√−50 + E, for x ∈ [0, 6.5 − 2h],√−37.5 + E, for x = 6.5 − h√−25 + E, for x = 6.5√−12.5 + E, for x = 6.5 + h√
E, for x ∈ [6.5 + 2h, 15]

(36)
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Fig. 3 The Woods-Saxon potential

7.2 Radial Schrödinger equation: the resonance problem

We consider the numerical solution of the radial time independent Schrödinger equa-
tion (1) in the well-known case of the Woods-Saxon potential (35). It is known that the
interval of integration for these kind of problems is equal to [0,∞]. For the numerical
solution of the above problem we need to approximate this true (infinite) interval of
integration by a finite interval. For the purpose of our numerical example we take the
domain of integration as x ∈ [0, 15]. We consider Eq. (1) in a rather large domain of
energies, i.e. E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential dies away faster than the
term l(l+1)

x2 and the Schrödinger equation effectively reduces to

y′′(x)+
(

k2 − l(l + 1)

x2

)
y(x) = 0 (37)

for x greater than some value X .
The above equation has linearly independent solutions kx jl(kx) and kxnl(kx)

where jl(kx) and nl(kx) are the spherical Bessel and Neumann functions respectively.
Thus the solution of Eq. (1) (when x → ∞ ) has the asymptotic form

y(x) � Akx jl(kx)− Bkxnl(kx)

� AC

[
sin

(
kx − lπ

2

)
+ tan δl cos

(
kx − lπ

2

)]
(38)

where δl is the phase shift, that is calculated from the formula
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tan δl = y(x2)S(x1)− y(x1)S(x2)

y(x1)C(x1)− y(x2)C(x2)
(39)

for x1 and x2 distinct points in the asymptotic region (we choose x1 as the right hand
end point of the interval of integration and x2 = x1 − h) with S(x) = kx jl(kx) and
C(x) = −kxnl(kx). Since we consider the present problem as an initial-value prob-
lem, we need y0, y1 before starting a two-step method. From the initial condition we
obtain y0. The other value can be obtained using the Runge-Kutta-Nyström methods of
Dormand et al. (see [8]). With these starting values we evaluate at x1 of the asymptotic
region the phase shift δl .

For positive energies we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem when
the positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:

y(0) = 0, y(x) = cos

(√
E×

)
for large x . (40)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:

– The Numerov’s method which is indicated as Method I
– The Exponentially-fitted two-step method developed by Raptis and Allison [37]

which is indicated as Method II
– The two-step P-stable fourth algebraic order method developed by Wang [142]

which is indicated as Method III
– The two-step exponentially-fitted fourth algebraic order method developed by

Ixaru and Rizea [136] which is indicated as Method IV
– The two-step exponentially-fitted fourth algebraic order method developed by

Raptis [143] which is indicated as Method V
– The classical sixth algebraic order method of the new proposed family which is

indicated as Method VI
– The new developed two-step Numerov-type sixth algebraic order hybrid method

with phase-lag and its first and second derivatives equal to zero obtained in para-
graph 4.2 which is indicated as Method VII

The computed eigenenergies are compared with exact ones. In Fig. 4 we present

the maximum absolute error log10

(
Err

)
where

Err = |Ecalculated − Eaccurate| (41)

of the eigenenergy E2 = 341.495874, for several values of CPU time (in seconds). In

Fig. 5 we present the maximum absolute error log10

(
Err

)
where

Err = |Ecalculated − Eaccurate| (42)
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Fig. 4 Accuracy (Digits) for several values of CPU time in seconds for the eigenvalue E2 = 341.495874.
The nonexistence of a value of Accuracy (Digits) indicates that for this CPU time, the Accuracy (Digits) is
less than 0

of the eigenenergy E3 = 989.701916, for several values of CPU time (in seconds).

8 Remarks: conclusions—summaries

8.1 Remarks and conclusions

The purpose of this paper was the development of a new explicit hybrid Numerov-type
method of fourth algebraic order with phase-lag and its first two derivatives equal to
zero.
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Fig. 5 Accuracy (Digits) for several values of CPU time in seconds for the eigenvalue E3 = 989.701916.
The nonexistence of a value of Accuracy (Digits) indicates that for this CPU time, the Accuracy (Digits) is
less than 0

We have applied the new method to the resonance problem of the one-dimensional
Schrödinger equation.

Based on the results presented above we have the following conclusions:

– The Numerov’s Method (Method I) is much more efficient than the classical sixth
algebraic order method of the new proposed family (Method VI). The reason is
that for the Numerov’s method (Method I) the error increases as the third power of
G while for the classical sixth algebraic order method of the new proposed family
(Method VI) the error increases as the fourth power of G (see Sect. 4 for more
details).
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– The Exponentially-fitted two-step method developed by Raptis and Allison [37]
(Method II) is more efficient than the Numerov’s Method (Method I). The reason
is that for the Numerov’s method (Method I) the error increases as the third power
of G while for the method developed by Raptis and Allison (Method II) the error
increases as the second power of G (see Sect. 4 for more details).

– The two-step P-stable fourth algebraic order method developed by Wang [142]
(Method III) has the same approximately behavior with the the exponentially-
fitted two-step method developed by Raptis and Allison [37] (Method II). The
reason is that for the method developed by Raptis and Allison (Method II) the
error increases as the second power of G i.e. has the same dependence with G
like the two-step P-stable fourth algebraic order method developed by Wang [142]
(Method III)(see Sect. 4 for more details).

– The two-step exponentially-fitted fourth algebraic order method developed by Ix-
aru and Rizea [136](Method IV) has the same approximately behavior with the
the exponentially-fitted two-step method developed by Raptis and Allison [37]
(Method II) and the two-step P-stable fourth algebraic order method developed by
Wang [142] (Method III) for low energies and is more efficient than the Method
II and Method III for high energies. The reason is that for the method developed
by Ixaru and Rizea [136] (Method IV) the error increases as the first power of G
while for the exponentially-fitted two-step method developed by Raptis and Alli-
son [37] (Method II) and the the two-step P-stable fourth algebraic order method
developed by Wang [142] (Method III) the error increases as the second power of
G (see Sect. 4 for more details).

– The two-step exponentially-fitted fourth algebraic order method developed by
Raptis [143] (Method V) has the same approximately behavior with the two-step
exponentially-fitted fourth algebraic order method developed by Ixaru and Rizea
[136](Method IV). The reason is that for the method developed by Ixaru and Rizea
[136] (Method IV) the error increases as the first power of G i.e. has the same
dependence with G like the exponentially-fitted two-step method developed by
Raptis [143] (Method V)

– Finally, the new developed two-step Numerov-type sixth algebraic order hybrid
method with phase-lag and its first and second derivatives equal to zero obtained in
paragraph 4.2 (Method VII) is much more efficient than all the other methods. The
reason is that this is a sixth algebraic order method for which the error increases
as the second power of G.

8.2 Summaries on the properties of the numerical methods

From the analysis presented above (comparative error analysis and comparative stabil-
ity anslysis) and from the numerical results presented above, the following summaries
on the importance of the properties of the numerical methods are excluded:

– The dependence of the Algebraic Order of a Numerical Method and the parameter
G = Vc − E (where Vc is the constant approximation of the potential). For the
same algebraic order it is important to have the minimal possible power of the
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parameter G. This is because in this case we have the minimal Local Truncation
Error.

– The Phase-Lag and Its Derivatives must be equal to zero since this leads to the
reduction of the power of G in the terms of the Local Truncation Error. The impor-
tant is the phase-lag and as many as possible derivatives to be vanished in order
to have at least one order lower of the power of the parameter G than the previous
known method of the same family.

– The explicit schemes (like the obtained in this paper) give much better results
then the corresponding implicit for the numerical approximation of the radial
Schrödinger equation.

– The Large Interval of Periodicity, as we have mentioned previously, doesn’t play
important role for the numerical solution of this category of problems.

During our research for this paper we have realized the following remark

Remark 3 The symmetric multistep methods which have the phase-lag and its deriv-
atives equal to zero are exactly the same with the symmetric multistep methods of the
same form which integrates any linear combination of the functions

{
1, x, x2, x3, xm, . . . , cos(w x), sin(w x), x cos(w x), x sin(w x),

x2 cos(w x), x2 sin(w x), . . . , x p cos(w x), x p sin(w x),

}
(43)

with the following algorithm:

– The symmetric multistep method which has the phase-lag equal to zero (phase-
fitted) is exactly the same with the symmetric multistep method of the same form
which integrates any linear combination of the functions

{
1, x, x2, x3, xm, . . . , cos(w x), sin(w x)

}
(44)

– The symmetric multistep method which has the phase-lag and its first derivative
equal to zero is exactly the same with the symmetric multistep method of the same
form which integrates any linear combination of the functions

{
1, x, x2, x3, xm, . . . , cos(w x), sin(w x), x cos(w x), x sin(w x)

}

(45)

– The symmetric multistep method which has the phase-lag and its first and second
derivative equal to zero is exactly the same with the symmetric multistep method
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of the same form which integrates any linear combination of the functions

{
1, x, x2, x3, xm, . . . , cos(w x), sin(w x),

x cos(w x), x sin(w x), x2 cos(w x), x2 sin(w x)

}
(46)

The reason can be easily obtained from the definition of the phase-lag. In the
Appendix B we prove that the above algorithm is applied for the case of Numerov’s
method.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix A

The classical method of the new proposed family
6

which is indicated

as Method VI

LTEMethodVI = h8
[(

1

2520
y (x)

)
G4 +

(
1

630
g (x) y (x))G3

+
(

11

1260

(
d2

dx2 g (x)

)
y (x)+ 1

210

(
d

dx
g (x)

)
d

dx
y (x)

+ 1

420
(g (x))2 y (x)

)
G2 +

(
2

315

(
d4

dx4 g (x)

)
y (x)

+ 1

105

(
d3

dx3 g (x)

)
d

dx
y (x)+ 1

105
g (x)

(
d

dx
y (x)

)
d

dx
g (x)

+ 11

630
g (x) y (x)

d2

dx2 g (x)+ 1

90

(
d

dx
g (x)

)2
y (x)

+ 1

630
(g (x))3 y (x)

)
G + 1

2520

(
d6

dx6 g (x)

)
y (x)

+ 1

420

(
d5

dx5
g (x)

)
d

dx
y (x)+ 2

315
g (x) y (x)

d4

dx4 g (x)

+ 1

168

(
d2

dx2 g (x)

)2

y (x)+ 13

1260

(
d

dx
g (x)

)
y (x)

d3

dx3 g (x)

+ 1

105
g (x)

(
d

dx
y (x)

)
d3

dx3 g (x)+ 1

210
(g (x))2

(
d

dx
y (x)

)
d

dx
g (x)

6 Classical method of the family is the method of the family with constant coefficients which has the same
algebraic order.
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+ 2

105

(
d

dx
g (x)

)(
d

dx
y (x)

)
d2

dx2 g (x)+ 11

1260
(g (x))2 y (x)

d2

dx2 g (x)

+ 1

90
g (x) y (x)

(
d

dx
g (x)

)2
+ 1

2520
(g (x))4 y (x)

]
(47)

The new developed two-step Numerov-type hybrid method with phase-

lag and its first derivative equal to zero obtained in paragraph 4.2

which is indicated as Method VII

LTEMethodVII = h8
[(

1

630

(
d2

dx2 g (x)

)
y (x)

)
G2

+
(

13

2520

(
d4

dx4 g (x)

)
y (x)+ 1

210

(
d3

dx3 g (x)

)
d

dx
y (x)

+ 1

420
g (x)

(
d

dx
y (x)

)
d

dx
g (x)+ 23

2520
g (x) y (x)

d2

dx2 g (x)

+ 2

315

(
d

dx
g (x)

)2

y (x)+ 1

2520
(g (x))3 y (x)

)
G

+ 1

2520

(
d6

dx6 g (x)

)
y (x)+ 1

420

(
d5

dx5
g (x)

)
d

dx
y (x)

+ 2

315
g (x) y (x)

d4

dx4 g (x)+ 1

168

(
d2

dx2 g (x)

)2

y (x)

+ 13

1260

(
d

dx
g (x)

)
y (x)

d3

dx3 g (x)

+ 1

105
g (x)

(
d

dx
y (x)

)
d3

dx3 g (x)+ 1

210
(g (x))2

(
d

dx
y (x)

)
d

dx
g (x)

+ 2

105

(
d

dx
g (x)

)(
d

dx
y (x)

)
d2

dx2 g (x)+ 11

1260
(g (x))2 y (x)

d2

dx2 g (x)

+ 1

90
g (x) y (x)

(
d

dx
g (x)

)2

+ 1

2520
(g (x))4 y (x)

]
(48)

Appendix B: Numerov’s Methods with phase-lag and its first
and second derivatives equal to zero

B.1. The phase-fitted Numerov’s Method

Consider the well known Numerov’s method:

φn+1 + c0 φn + φn−1 = h2 [
c1

(
φ′′

n+1 + φ′′
n−1

) + c2 φ
′′
n

]
(49)
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Requiring the above method (49) to have the maximum algebraic order with one
free parameter, the following relations are obtained:

c0 = −2, c2 := 1 − 2 c1 (50)

The application of the above method to the scalar test equation (6) gives the differ-
ence equation (12) with the associated characteristic equation (13), where:

A0(v) = −2 + v2 (1 − 2 c1)

A1(v) = 1 + v2 c1 (51)

By applying k = 1 in the formula (9), we have that the phase-lag is equal to:

phl = 1

2

2
(
1 + v2 c1

)
cos (v)− 2 + v2 (1 − 2 c1)

1 + v2 c1
(52)

Demanding the phase-lag to be vanished we find out that:

c1 = −2 cos (v)+ 2 − v2

2 cos (v) v2 − 2 v2 (53)

For small values of |v| the formulae given by (53) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

c1 = 1

12
+ 1

240
v2 + 1

6048
v4 + 1

172800
v6

+ 1

5322240
v8 + 691

118879488000
v10

+ 1

5748019200
v12 + 3617

711374856192000
v14

+ 43867

300534953951232000
v16 + · · · (54)

The local truncation error of the new proposed method is given by:

LTE = − h6

240

(
y(6)n + ω2 y(4)n

)
(55)

From the above analysis it is proved the following theorem

Theorem 4 The Numerov’s method with phase-lag equal to zero is exactly the same
with the method developed by Raptis and Allison [37].
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B.2. The Numerov’s Method with phase- lag and its first derivative

equal to zero

Consider again the well known Numerov’s method (37). Requiring the method (49)
to have the maximum algebraic order with two free parameter, the following relation
is hold:

c0 = −2 (56)

The application of the above method to the scalar test equation (6) gives the differ-
ence equation (12) with the associated characteristic equation (13), where:

A0(v) = −2 + v2 c2

A1(v) = 1 + v2 c1 (57)

By applying k = 1 in the formula (9), we have that the phase-lag is equal to:

phl = 1

2

2
(
1 + v2 c1

)
cos (v)− 2 + v2 c2

1 + v2 c1
(58)

The phase-lag’s first derivative is given by:

˙phl = − sin (v)+ 2 sin (v) v2 c1 + sin (v) v4c1
2 − v c2 − 2 v c1(

1 + v2 c1
)2 (59)

Demanding the phase-lag and its first derivative to be vanished we find out that:

c1 = −v sin (v)− 2 cos (v)+ 2

sin (v) v3

c2 = 2 v sin (v)− 4 cos (v)+ 2 cos (2 v)+ 2

sin (v) v3 (60)

For small values of |v| the formulae given by (53) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

c1 = 1

12
+ 1

120
v2 + 17

20160
v4 + 31

362880
v6

+ 691

79833600
v8 + 5461

6227020800
v10

+ 929569

10461394944000
v12 + 3202291

355687428096000
v14

+ 221930581

243290200817664000
v16 + · · ·

c2 = 5

6
− 1

60
v2 + 5

2016
v4 + 29

181440
v6
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+ 139

7983360
v8 + 5459

3113510400
v10

+ 185917

1046139494400
v12 + 3202289

177843714048000
v14

+ 44386117

24329020081766400
v16 + · · · (61)

The local truncation error of the new proposed method is given by:

LTE = − h6

240

(
y(6)n + 2ω2 y(4)n + ω4 y(2)n

)
(62)

From the above analysis it is proved the following theorem

Theorem 5 The Numerov’s method with phase-lag and its first derivative equal to
zero is exactly the same with the method developed by Ixaru and Rizea [136].

B.3. The Numerov’s Method with phase- lag and its first and second

derivatives equal to zero

Consider again the well known Numerov’s method (37).
The application of the above method to the scalar test equation (6) gives the differ-

ence equation (12) with the associated characteristic equation (13), where:

A0(v) = c0 + v2 c2

A1(v) = 1 + v2 c1 (63)

By applying k = 1 in the formula (9), we have that the phase-lag is equal to:

phl = 1

2

2
(
1 + v2 c1

)
cos (v)+ c0 + v2 c2

1 + v2 c1
(64)

The phase-lag’s first derivative is given by:

˙phl = − sin (v)+ 2 sin (v) v2c1 + sin (v) v4c1
2 − vc2 + v c1 c0(

1 + v2c1
)2 (65)

The phase-lag’s second derivative is given by:

¨phl = − T4(
1 + v2 c1

)3 (66)

T4 = 3 cos (v) v2 c1 + cos (v)+ c1 c0 − c2

+ 3 cos (v) v4 c1
2 + cos (v) v6 c1

3 + 3 c2 v2 c1 − 3 v2c1
2 c0
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Demanding the phase-lag and its first and second derivatives to be vanished we find
out that:

c0 = −3 sin (2 v)− 3 v + v cos (2 v)

v cos (v)+ 3 sin (v)

c1 = −v cos (v)+ sin (v)

v3 cos (v)+ 3 v2 sin (v)

c2 = 3 v − v cos (2 v)− sin (2 v)

v3 cos (v)+ 3 v2 sin (v)
(67)

For small values of |v| the formulae given by (53) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

c0 = −2 − 1

240
v6 − 1

2016
v8 − 1

11520
v10

− 2291

159667200
v12 − 62879

26417664000
v14

− 2647

6706022400
v16 + · · ·

c1 = 1

12
+ 1

80
v2 + 41

20160
v4 + 1219

3628800
v6

+ 8887

159667200
v8 + 8045189

871782912000
v10

+ 16009177

10461394944000
v12 + 2707911809

10670622842880000
v14

+ 716697321049

17030314057236480000
v16 + · · ·

c2 = 5

6
− 1

40
v2 + 17

2016
v4 + 1811

1814400
v6

+ 13817

79833600
v8 + 12478951

435891456000
v10

+ 24838031

5230697472000
v12 + 600196633

762187345920000
v14

+ 222395138593

1703031405723648000
v16 + . . . (68)

The local truncation error of the new proposed method is given by:

LTE = − h6

240

(
y(6)n + 3ω2 y(4)n + 3ω4 y(2)n + ω6 yn

)
(69)

From the above analysis it is proved the following theorem

Theorem 6 The Numerov’s method with phase-lag and its first and second derivatives
equal to zero is exactly the same with the method developed by Raptis [143].
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